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Abstract

Image captioning aims to automatically generate captions for
images by learning a cross-modal generator from vision to
language. The large amount of image-text pairs required for
training is usually sourced from the internet due to the man-
ual cost, which brings the noise with mismatched relevance
that affects the learning process. Unlike traditional noisy la-
bel learning, the key challenge in processing noisy image-text
pairs is to finely identify the mismatched words to make the
most use of trustworthy information in the text, rather than
coarsely weighing the entire examples. To tackle this chal-
lenge, we propose a Noise-aware Image Captioning method
(NIC) to adaptively mitigate the erroneous guidance from
noise by progressively exploring mismatched words. Specif-
ically, NIC first identifies mismatched words by quantifying
word-label reliability from two aspects: 1) inter-modal rep-
resentativeness, which measures the significance of the cur-
rent word by assessing cross-modal correlation via prediction
certainty; 2) intra-modal informativeness, which amplifies the
effect of current prediction by combining the quality of subse-
quent word generation. During optimization, NIC constructs
the pseudo-word-labels considering the reliability of the ori-
gin word-labels and model convergence to periodically co-
ordinate mismatched words. As a result, NIC can effectively
exploit both clean and noisy image-text pairs to learn a more
robust mapping function. Extensive experiments conducted
on the MS-COCO and Conceptual Caption datasets validate
the effectiveness of our method in various noisy scenarios.

1 Introduction

In reality, people perceive information from various modali-
ties like vision, hearing, and smell. With the development of
artificial intelligence, especially deep learning, multi-modal
learning has received increasing attention (Hossain et al.
2019; Yang et al. 2020, 2021). Image captioning is one of
the important downstream tasks, which aims to automati-
cally generate meaningful descriptions for images and has a
wide range of applications in daily lives (Hossain et al. 2019;
Baltrusaitis, Ahuja, and Morency 2019; Yang et al. 2023).
For example, E-commerce benefits from quick product im-
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age descriptions, and visually impaired people use caption-
ing models to experience the visual world.

Indeed, image captioning research focuses on learning
generators between heterogeneous image-text modalities.
This involves comprehending the given image through com-
puter vision techniques and generating corresponding de-
scriptions using natural language processing. Initially, re-
searchers explored the encoder-decoder architecture (Yang
et al. 2019a; Zhang et al. 2019; Yang et al. 2019¢) with
CNNs (Albawi, Mohammed, and Al-Zawi 2017) as im-
age encoders and LSTM (Greff et al. 2017) as text de-
coders (Vinyals et al. 2015). To consider local and global
features simultaneously, (Huang et al. 2019) used image re-
gions to decode image segmentations sequentially to words,
adding attention mechanisms to focus on specific image
regions during decoding. With the advancement in multi-
head self-attention-based Transformers, they improved the
modeling of intra-modal and inter-modal relationships, lead-
ing to better captions (Cornia et al. 2020; Zhang et al.
2021; Yang et al. 2022). Notably, effective deep caption-
ing requires large-scale image-text pairs, such as CLIP
using 400 million image-text pairs for training (Radford
et al. 2021), typically collected from the internet to re-
duce labor costs. However, an issue is the presence of noisy
image-text pairs, where mismatches significantly degrade
model performance. Researchers have attempted to address
this by explicitly weighting image-text pairs (Huang et al.
2019, 2021), with smaller weights indicating more noise.
Yet, noisy samples in image captioning scenarios are fine-
grained, differing from coarse-grained label noise in noisy
label learning. Figure 1 illustrates different noise levels:
matched, partially matched, and mismatched. The degree
of noise is a continuous value from O to 1, where O de-
notes mismatched or useless pairs, and 1 means matched or
clean pairs. Partially matched pairs still contain useful word-
region pairs, with lower noise degrees indicating more useful
pairs. Thus, the noisy image-text pair can be considered the
ground truth sentence containing incorrect words.

Along this line, in this paper, we mitigate the influence
of noisy image-text pairs by fine-grained exploring mis-
matched words and progressively conducting more reliable
pseudo-word-labels. Naturally, we propose a Noisy-aware
Image Captioning method (NIC), which learns image-text
pairs with the newly designed reliability evaluation mecha-
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Figure 1: Example of different levels of noise. Image-text
pairs from the real world usually contain noise in varying
degrees, e.g., (a), (b), and (c) respectively show the matched,
partially matched, and mismatched samples. Valid object
words in the caption have been bolded, where the blue ones
map relevant regions in the image, while the red ones do not.

nism at the word level, comprehensively considering both
the inter-modal and intra-modal influences. Specifically,
NIC learns the reliability weight of word-labels from two
aspects: Inter-modal representativeness focuses on informa-
tion certainty of the current word’s prediction, which re-
flects the relevance of the current word to image contents;
Intra-modal informativeness further inspects the quality of
subsequent word generation based on previous prediction.
During iterative model optimization, we construct pseudo-
word-labels based on word-label reliability and model con-
vergence to coordinate mismatched words, enhancing ro-
bustness and accuracy in the supervised constraints. More-
over, as a generalized framework, NIC can be applied to any
existing image captioning models, and several typical ap-
proaches (Huang et al. 2019; Zhang et al. 2021; Luo et al.
2021; Wang, Xu, and Sun 2022) are adopted for validation.

In summary, the contributions of this paper can be sum-
marized as follows:

* We explore the noisy image captioning in a fine-grained
manner, which carefully measures the word-labels con-
sidering both the inter-modal and intra-modal influences
to identify mismatched words;

* We design a noise-aware image captioning approach,
which can progressively conduct pseudo-word-labels to
adaptively coordinate mismatched words for robustness;

¢ In experiments, our method improves the performance in
all noisy scenes, which validates its effectiveness.

2 Related Work
2.1 Image Captioning

Image captioning aims to automatically generate a sen-
tence to describe the visual content of a given image. Early
works designed a template-based approach (Farhadi et al.
2010; Li et al. 2011), which manually generated a caption
template and filled it with objects, attributes, and relation-
ships detected from the images. However, due to the pre-
made nature of the template, only descriptions of a spe-
cific length may be produced, which limits flexibility. With
the development of deep learning, modern image caption-
ing methods have achieved breaking advances. Inspired by

neural machine translation (Cho et al. 2014), researchers
have explored the encoder-decoder architecture. (Vinyals
et al. 2015) used CNN to encode the images and LSTM to
generate sentences. (Karpathy and Fei-Fei 2017) used bi-
directional RNN as decoders and aligned two modalities.
To align each word with relevant visual content, (You et al.
2016) designed a semantic attention module that measures
the semantic importance of visual objects. (Huang et al.
2019) added the attention on the attention module to refine
attention results. Encouraged by the success of transformers
in refining sequence modeling (Vaswani et al. 2017), (Her-
dade et al. 2019) used the self-attention module to model the
relationships between image regions. (Wang, Xu, and Sun
2022) designed a refined encoder to capture the internal re-
lationships between the grid features. To achieve better per-
formance, the above methods usually require a large amount
of image-text pairs as training data. However, the texts may
be noisy due to various reasons, such as limited crowdsourc-
ing, low-quality labeled web-crawled images, etc.

2.2 Noisy Label Learning

Learning from noisy labels is an important task as the pres-
ence of noisy labels can significantly degrade the model’s
generalization performance. Various methods have been
proposed to train robust models under noisy labels, which
can be roughly categorized into three groups: 1) Robust ar-
chitecture. For instance, (Chen and Gupta 2015) added a
noise adaptation layer on top of the softmax layer; (Cheng
et al. 2020) proposed to use an edge information network
for model architecture. 2) Robust loss function. For exam-
ple, (Wang et al. 2019) used weighted sums of cross-entropy
loss and reverse cross-entropy loss to construct robust loss
functions; (Lyu and Tsang 2020) proposed a curriculum
loss to adaptively select samples for training. 3) Loss ad-
justment. For example, (Reed et al. 2015) proposed to use
a combination of raw labels and predicted labels to calcu-
late the loss; (Wang et al. 2021) utilized the entropy of
predicted labels to progressively correct semantic classes.
However, these methods are primarily designed for image
classification tasks, and directly transferring them to cross-
modal tasks can not yield optimal results. To better solve the
noisy problem in cross-modal scenes, (Huang et al. 2021)
designed a triplet loss with soft edges, and (Qin et al. 2022)
proposed a robust dynamic hinge loss to capture and learn
from uncertainty in cross-modal retrieval tasks. (Huang
et al. 2019; Luo et al. 2021) directly set the same smooth-
ing parameters for all examples in the image captioning task.
(Li et al. 2021) introduced momentum distillation for learn-
ing from pseudo-targets, and (Kang et al. 2023) utilized pre-
trained CLIP to compute image-text similarity, serving as a
training control signal for guiding the model in learning di-
verse alignment levels, both drawing from prior knowledge
of the large-scale models. However, these methods only pro-
cessed the holistic examples at a coarse level or relied on
additional prior knowledge. In contrast, we explore mis-
matched words at a fine-grained level by considering inter-
modal and intra-modal information from the data itself and
provide flexible loss constraints.
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Figure 2: Framework of the proposed NIC. NIC first distinguishes mismatched words from two aspects: 1) Inter-Modal Rep-
resentativeness, which considers the entropy of predicted word p;1 as €1 to measure the relevance between the current word
and the image; 2) Intra-Modal Discriminativeness, which calculates the cross-entropy of context (®) to obtain ¢; » to reflect the
stability of sequence generation. Meanwhile, to further exploit the mismatched words, NIC combines the reliability weight (¢;)
with the model convergence (h (y)) to construct the pseudo-word-label g; for model updating.

3 Proposed Method

Figure 2 illustrates an overview of NIC. We add an ex-
tra inspection process for identifying word-labels compared
with traditional captioning methods. On the one hand, inter-
modal semantic relevancy is quantified by measuring the
certainty of word-predictions during the generation process.
On the other hand, additional predictions, which source from
feeding the original prediction into the decoder(i.e., the blue
arrow), are considered to enlarge the gap between clean and
noisy words inspired by error accumulation. Combined with
model convergence h (7y), the aggregated reliability weight
¢; reflects the reliability of each word-label, which is further
used to construct more reliable pseudo word-label for more
robust parameter updating (i.e., the red arrow).

Basic Notations For given image-text pairs D =
. o . . . . .
{#0, 80} ,_; in noisy scenarios, ,, s, denotes the o—th im-
age and text respectively, and O is the number of examples.
There exist noisy pairs, where contents of 2, mismatch or
partially matches s, providing biased guidance information

for training and leading to a drop in performance.

3.1 Cross-modal Generator

NIC is a versatile framework that can be applied with various
state-of-the-art cross-modal models. Considering the effec-
tiveness, here NIC takes the well-known Transformer as an
example, essentially an Encoder-Decoder architecture. Stan-
dard Transformer model (Vaswani et al. 2017) is usually ap-
plied to NLP tasks at early stages and further extended to the
study of image captioning rapidly by virtue of its powerful
learning ability based on multi-head cross-attention mecha-

nism. The encoder aims to model the relationships between
image regions to obtain semantically richer image region
features, which contains two sub-layers, a multi-head atten-
tion module (MHA), and a position-wise feed-forward net-
work (FFN). To align the visual-language modality, the de-
coder first takes the caption as input and uses the mask ma-
trix to compute the multi-head attention at each moment in
parallel to obtain the language token features e”. Next, e
projected as query along with visual area features e’ from
encoder projected as key and value are fed to the MHA and
then FFN for the generation of predictions.

Based on the basic model structure, model learning is gen-
erally divided into training and fine-tuning. During training,
optimization aims to minimize the cross-entropy loss:

L

Uxp(0) == logpo(uilyri-1), (1
=1

where y;.;, denotes the ground truth, and L represents the
number of tokens in the caption. The parameters 6 of the net-
work define a policy py. Afterward, during fine-tuning, re-
searchers optimize the non-differentiable metrics with Self-
Critical Sequence Training (Rennie et al. 2017) based on the
best model obtained in the previous stage:

Crr(0) = —Ey,..po [r (y1.0)]. 2

The reward r(-) is a sentence-level metric for the generated
sentence and the ground truth, which is always represented
by the score of captioning metric (e.g., CIDEr (Vedantam,
Zitnick, and Parikh 2015)).



3.2 Noise-Aware Identification

Inspired by limited gains in performance from weighting
image-text pairs, we emphasize fine-grained mechanisms
from both inter-modal and intra-modal perspectives.

Inter-Modal Representativeness In image captioning,
the decoder predicts the current word based on preceding
text and visual features, essentially performing a classifica-
tion task within the vocabulary. Combined with correspond-
ing cross-modal attention and context, the decoder yields
more confident predictions, which is not the case for noisy
words nevertheless. The probability distribution of predic-
tions is influenced by image-text correspondence, and fol-
lowing (Wang et al. 2021), the prediction appears high con-
fidence when the entropy remains low. Thus, entropy can
serve to quantify the quality of generation based on visual-
textual relevance. For target word-label y;, € ;1 is introduced
as the inter-modal representativeness assessment:

€1 =1—Norm (H (pi+1)), (3)

where p;+1 denotes model prediction based on y;. H (-) de-
notes calculation of entropy. As the higher the entropy, the
higher the uncertainty, ¢; ; about noisy word-labels tend to
have lower values compared with clean ones, which reflect
the image-word correlation from prediction confidence.

Intra-Modal Discriminativeness Unlike image classifi-
cation, image captioning is sequential, where contextual in-
formation affects subsequent word generation. The quality
of prefix words as guidance largely determines subsequent
word generation. Therefore, we propose a Subsequent Pre-
diction Inspection strategy to judge whether the target word-
label is confident and valid. As Figure 3 takes word-label y;
as an example, traditional methods only get prediction se-
quence with given word-labels, i.e., p = p;.1,, which is later
directed to approach ground truth. In contrast, after y; has
been absorbed, NIC successively feeds word-predictions in
p into the decoder as the mock label each moment to gener-
ate additional subsequent word-predictions p; for ;:

o =ity = {01},

Pr =Piyor p; iig2’ @)
p; = Decoder(e’, y<i11 U {pri1} UPp, i 1)-

Quality of p; reveals rationality of given word-label y; in
that the mock label (original word-prediction) based on a
noisy word-label always leads to worse subsequent word-
predictions. Notably, additional predictions gradually lose
more semantic information when the target word-label is
noisy, resulting in error accumulation. Thus, p;" with noisy
original predictions as the source corresponds to a more ex-
aggerated loss value compared to clean words. Given this,
€1,2 1s introduced as the intra-modal discriminativeness as-
sessment considering the cross-entropy loss brought by p;”:

1 N
€2=1—Norm <L—(l—|—2)£XE (yl+2:L;pg+2:L)> ’
®

where ;4 2.1, is the annotated word-labels, and ]3; yo.L is the
word-predictions with a mixture of word-labels and original
word-predictions as the input source of the decoder.
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Figure 3: Comparison chart about Baseline and NIC on de-
coding stage with noisy word-label y; as an example. Apart
from normal prediction sequence p, NIC generates addi-
tional predictions p;’ = P 4o, With regard to each y; based
on previous word-predictions.

3.3 Progressive Coordination

Since traditional image captioning methods ignore the noise
in labels, the wrong visual-to-language mapping relation-
ship is absorbed undesirably, i.e. Eq. 1 and Eq. 2, which
leads to a huge drop in performance. From a label-fitting
standpoint, we conduct pseudo-word-labels via a progres-
sive coordination strategy, where the model fits reliable and
clean word-labels as usual, but gradually places more trust
in its predictions for noisy word-labels during the training
process. As mentioned above, the reliability weight of each
word-label can be defined by ¢, 1 and €2, e.g., €1 + €2.
Considering that the model fits the noise in varying degrees
as the training progresses to different stages, model conver-
gence (i.e., iterations) will be taken into consideration:

1
LD py (i ) g (6)
e=h(y)*(e1+e€2),

where v and I' respectively represent the current iteration
and total iterations; C' and 7 are the hyperparameters to ad-
just the curvature. ¢; denotes the reliability, whose value
is higher for the clean word compared with the noisy one.
Then, we fuse each word-label and its corresponding model
prediction to construct a more reliable pseudo-word label
based on ¢; and modify the constraint:

o =ey+ (1 —€) D,

L
\p(0) =~ Zlogpe@ﬂyuﬂ),
=1

(7

where y; is the ground truth, p; is the prediction relied on y;
and ; is the constructed pseudo label eventually. In the fine-
tuning stage, ¢z, (0) optimizes the model parameters using
CIDEr scores. Notably, CIDEr averages cosine similarity
between predicted sentence and annotated sentence under
different n-gram, considering TF-IDF (Salton and Buckley
1988) with n-gram. Thus, we expand label fusing from word



level to n-grams-level, where the reliability weight of n-
grams TF-IDF starting from [—th word sources from averag-
ing ¢ of each word in the n-grams, i.e., €] = % Zfrn_l €.
Thus, each TF-IDF weight in the label representation vector
is modified at the n-grams-level:

gy)" =e'gy)" + (1 —¢') g(B)", (®)

where g(y;)™ is TF-IDF of n-grams ground truth starting
from [—th word and g(p;)™ is that of n-grams prediction.
In like manner, NIC still suggests reducing the gradient of
noisy words so as to minimize their negative impact.

4 Experiments
4.1 Datasets

Following traditional image captioning methods (Rennie
et al. 2017; Li et al. 2020; Zhang et al. 2021), we validate
our method using the MS-COCO dataset (Lin et al. 2014)
and the Conceptual Caption dataset (Sharma et al. 2018)
collected from the Internet. MS-COCO comprises 123,287
images, each with 5 captions. Using the “Karpaty” splitting
approach (Karpathy and Fei-Fei 2017), 5,000 images are al-
located for validation, 5,000 for testing, and the remainder
for training. To intentionally introduce noise into the MS-
COCO annotations, we employ two methods: 1) uniform
noise, randomly disrupting captions in the train set by a
specified ratio (Hu et al. 2023); 2) asymmetric noise, swap-
ping captions of images with similar category labels during
training (Huang et al. 2021), e.g., captions of two images
will be swapped when they both map any same object. The
noise ratio ranges from 0.2 to 0.8 in increments of 0.2. Con-
ceptual Caption (Sharma et al. 2018) is a large dataset of
image-text pairs from the Internet, totaling 3.3 million im-
ages, each with a single caption. Due to real internet sources,
approximately 3% ~ 20% of examples include noise. To ad-
dress computing constraints, we use a subset of Conceptual
Captions named CC152K for evaluation, as in (Huang et al.
2021). 1,000 images are allocated for validation, 1,000 for
testing, and the remainder for training.

4.2 Implementation Details

NIC is a general framework that applies to almost all ex-
isting image captioning methods, where one such state-of-
the-art method PureT (Wang, Xu, and Sun 2022) serves as
the baseline for our framework. In NIC, we set the model
embedding size dode; to 512, the number of transformer
heads to 8, and the number of refinement encoder and de-
coder blocks to 3. ADAM (Kingma and Ba 2015) is used as
the optimizer, with training epochs set to 25 and 30 for the
two stages, and a batch size of 10. The initial learning rate
is 5 x 1075, The hyperparameters C' and 7 are initially set
to 0.5 and 10 and adaptively adjust once per epoch based on
the curvature of the loss curve from the previous epoch. The
entire network is trained on an NVIDIA TITAN X GPU. The
code is available at https://github.com/njustkmg/NIC.

4.3 Baselines and Evaluation protocol

Compared models are classic state-of-the-art image caption-
ing methods: AoANet (Huang et al. 2019), ORT (Herdade

et al. 2019), SGAE (Yang et al. 2019b), M? T (Cornia et al.
2020), X-T (Pan et al. 2020), RSTNet (Zhang et al. 2021),
DLCT (Luo et al. 2021), PureT (Wang, Xu, and Sun 2022),
and SCD-Net (Luo et al. 2023), where AoANet, DLCT, and
SCD-Net slightly considered the robustness against noise.

Without loss of generality, all methods are evaluated with
metrics such as BLEU (Papineni et al. 2002), METEOR
(Banerjee and Lavie 2005), ROUGE-L (Lin 2004), CIDEr
(Vedantam, Zitnick, and Parikh 2015), and SPICE (Ander-
son et al. 2016), using the publicly available code. Among
them, CIDEr and SPICE are evaluation metrics designed
specifically for image captioning tasks.

4.4 Qualitative Analysis

Table 1 presents the results on the uniform noise dataset at
an 80% noise ratio. All models are trained in both the cross-
entropy and CIDEr optimization stages, with multiple ex-
periments for T-test fairness. The obtained P-values are less
than 0.05, signifying a statistically significant difference at
a 95% confidence level. The results demonstrate that NIC
consistently outperforms all methods in both stages, show-
ing a 6.2/5.3 improvement in CIDEr metrics and a 1.8/1.5
improvement in SPICE metrics compared to the baseline
PureT. This underscores NIC’s robust ability to generate
cross-modal content in high noise ratio scenarios, effectively
mitigating the impact of noisy examples. Note that while
SCD-Net benefits from using pre-trained CLIP to enhance
correlation learning, it suffers from a loss of valuable in-
formation in partially matched samples, resulting in inferior
performance. In contrast, NIC effectively utilizes both clean
and noisy image-text pairs to learn robustly.

To validate the effectiveness of NIC on non-artificially
constructed datasets, we conducted experiments on the Con-
ception Caption dataset. Table 2 reports the results of all
methods on the real noise dataset CC152K. Similarly, all
models learn with training and fine-tuning two stages for
fairness. The results show that NIC outperforms the exist-
ing state-of-the-art image captioning methods in all metrics,
which indicates its excellent robustness in reality.

4.5 Ablation Study

We design several variants of NIC to show the effectiveness
of key modules, which respectively remove prediction en-
tropy evaluation (w/o €1), the cumulative error evaluation
(w/o €3), and the progressive coordination (w/o k(7)) mod-
ule. As shown in the lower part of Table 1: 1) NIC w/o €;
and w/o €5 both achieve excellent scores than PureT but
lower than NIC, which shows that the entropy of the predic-
tion distribution based on word-region relevance and cumu-
lative error based on contextual information can effectively
discriminate noisy words. 2) The performance of using ori-
gin reliability weights is worse than that of NIC, which in-
dicates that the progressive coordination strategy ensures a
sufficient fitting process on clean samples during the early
training and cautious learning in the later stage.

4.6 Influence of the Noise Ratio

To explore the performance of NIC with varying noise ra-
tios, we observe this at four different noise levels: 20%,



Cross-Entropy Loss

CIDEr Score Optimization

Methods
\B@I\B@2\B@3\B@4\ M \ R \ C \ S \B@l\B@Z\B@MB@M M \ R \ C \ S

AoANet 53.8| 372 | 255 16.5| 164 | 40.2| 547 | 11.1| 669 | 49.9 | 349 | 193 | 18.7| 463 | 80.1| 11.5
ORT 534 1| 369 | 251 | 152 | 16.2| 39.6| 53.7| 10.0| 655 | 457 | 326 | 18.0| 182| 459| 79.0| 11.0
SGAE 52.6 | 355 | 248 | 15.0| 157| 39.3| 532| 95| 655 | 457 | 316 | 17.0| 17.2| 454 | 784 | 10.3
M2T 528 | 365| 249 | 160 | 16.0| 39.1| 542 | 10.2| 66.1 | 455 | 325 | 17.0| 18.1| 453 | 79.1| 11.0
X-T 52.8 | 362 | 253 | 1511 | 162| 394 | 54.6| 109 | 66.6 | 47.2 | 342 | 185 | 186| 459 | 79.6| 11.2
RSTNet 54.6 | 379 | 260 | 16.6 | 16.8| 40.8| 553 | 11.5| 67.6 | 50.5| 355 | 227 | 194| 47.0| 81.0| 12.1
DLCT 55.1| 384 | 27.5| 172 | 17.6| 41.3| 557 | 11.7] 682 | 51.1 | 362 | 23.5| 20.7| 47.7| 824 | 12.6
PureT 554 | 384 | 2777 | 17.5| 179| 41.7| 562 | 11.9| 68.7 | 51.7 | 36.8 | 23.7 | 20.8| 48.1| 83.0| 12.8
SCD-Net | 553 | 385| 269 | 16.8 | 17.3| 40.9| 559| 11.0| 69.1 | 51.7 | 34.8 | 22.7| 20.0| 474 | 82.1| 12.3
NIC 581 | 41.2| 298| 194 | 20.3| 46.3| 62.4| 13.7| 71.5| 551 | 38.8 | 26.3 | 23.5| 50.6 | 88.3 | 14.3
w/0 €1 57.5| 406 | 29.0| 18.8| 19.6| 45.1| 60.1| 12.8| 709 | 543 | 37.8 | 252 | 225| 49.6 | 87.0| 13.7
w/0 €9 57.0| 39.8| 284 | 183 | 189 | 43.9| 58.2| 123| 70.0 | 53.1 | 374 | 24.7 | 21.8| 48.6| 84.7| 13.2
wloh(y) | 57.2| 404 | 287 | 185 | 19.5| 45.0| 58.5| 12.4| 70.7 | 53.7| 37.5| 249 | 21.9| 49.2| 85.3| 13.3

Table 1: Performance of comparison methods on the uniform noise, where B@N, M, R, C and S are short for BLEU@N,
METEOR, ROUGE-L, CIDEr and SPICE scores.

Methods ‘

Cross-Entropy Loss

CIDEr Score Optimization

| Bal| Ba2| Ba3| B@4| M | R | C | S |B@l|Ba2|B@3|Ba4| M| R | C | S
AoANet| 235 152 10.6| 8.1 | 11.0] 27.6| 842 | 18.1] 26.1| 160 | 10.6| 7.5 | 11.2] 285 863 | 18.2
ORT | 23.1| 147 | 103 | 7.7 | 10.9| 27.4| 83.1| 17.5| 252 | 154 | 104 | 72 | 11.0| 280| 83.7 | 17.6
SGAE | 21.7| 140| 95 | 62| 97 | 264| 81.1| 17.0| 245| 138 | 96 | 62 | 10.1| 27.6| 822 17.1
M2T | 220| 141| 97 | 65| 100| 264| 822 17.0| 249 | 141| 99 | 638 | 10.6| 27.8| 82.9| 172
X-T 23.1| 147 | 100 | 74 | 10.7| 27.5| 823| 17.4| 258 | 153 | 104 | 7.4 | 11.0| 28.1| 84.4| 17.8
RSTNet | 23.6 | 152 | 10.8 | 85 | 11.1] 27.9| 852 | 18.5| 26.7 | 16.6| 109 89 | 11.8| 29.2| 87.5| 187
DLCT | 244 | 159 | 113 | 9.1 | 12.1| 284 85.6| 18.7| 274 | 172 | 11.8| 97 | 132] 29.9| 89.2| 19.2
PureT | 24.7| 159 | 11.6| 9.7 | 12.4| 28.8| 86.1| 19.0| 27.9 | 17.3 | 12.1| 10.1 | 13.3| 30.3| 89.8 | 19.4
SCD-Net| 24.0 | 150 | 109 | 93 | 11.3| 27.9| 859 184 | 27.2| 170 | 109| 99 | 12.8| 29.4| 8389 187
NIC | 27.8| 188 | 14.6 | 10.8 | 152] 32.5| 93.6| 20.5| 31.2 | 19.3 | 14.8 | 11.1| 154 32.9| 95.5| 20.9

Table 2: Performance of comparison methods on CC152K, where BQN, M, R, C and S are short for BLEU@N, METEOR,

ROUGE-L, CIDEr and SPICE scores.

40%, 60%, and 80%. Due to space constraints, only the fine-
tuning stage results are shown in Figure 4. NIC outperforms
state-of-the-art image captioning methods in all noise ratios.
At the same time, the performance of the conventional image
captioning method decreases substantially in the high noise
ratio scenes, such as 80% and 60% noise ratio, while NIC
still presents optimal performance. Therefore, it can be in-
ferred that our method has superior noise immunity. Besides,
when compared with the state-of-the-art method (PureT) us-
ing clean data (shown with black lines), note that NIC still
has competitive performance under 20% noise ratio, which
validates again NIC can reasonably utilize the noisy data in a
fine-grained manner to optimize the generation of captions.

4.7 NIC Based on Different Captioning Model

Here examines the generality of NIC on different captioning
models. Specifically, AoANet, DLCT, and RSTNet act as the
base model and are combined with the NIC framework (i.e.,
AoANet+, RSTNet+, and DLCT+). Among them, AoANet

is a traditional encoder-decoder architecture, while RSTNet
and DLCT are based on Transformer architecture. Table 3
reports the generalized performance of NIC on the real noisy
dataset CC152K. It is evident that our framework leads to
performance improvements across all methods, which in-
dicates that NIC can effectively improve the robustness of
existing caption models in realistic noise scenarios. Taking
DLCT+ as an example, the CIDEr metric shows a 6.5/5.5
improvement, and the SPICE metric improves 1.1/1.4.

4.8 Analysis of Noisy Word Identification

NIC’s noise robustness relies on accurately identifying noisy
words, a key focus of evaluation. Analyzing 100,000 clean
and 100,000 noisy word labels, we visualize the distribu-
tion of ¢ during training with an 80% noise ratio on the
uniform noise dataset (Figure 5 (a)). As training advances,
the model’s performance improves due to the fine-grained
identification and processing of noise, enhancing its ability
to recognize noise. In later stages, clean word labels consis-
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Figure 4: Captioning performance with different ratios of noisy, where RL represents the results of CIDEr Score Optimization.
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‘B@l ‘3@2‘3@3‘3@4‘ M ‘ R ‘ C ‘ S Figure 5: Analysis of noisy word identification. (a) illus-
AoANet 1261 116.011061 85 111.2128.5/869118.2 trates the reliability weight distribution histogram at various
RSTNet |26.8 |16.6]10.9| 8.9 [11.9/29.2|87.8|18.7 training stages, with the upper part depicting the early stage
DLCT 2774 [172111.81 97 113.21299(89.2119.2 and the lower part representing the mid-to-late stage. (b) re-
ports accuracy and F1 score under varying noise ratios.
AoANet+|28.9 |18.0 | 12.9| 9.6 |13.5]30.7|92.2|19.9
RSTNet+ | 29.7 | 18.4 | 13.5|10.2 | 13.7 | 31.5|93.1 | 20.2
DLCT+ |30.1 |18.5|14.0 | 10.9 |14.7 | 32.5|94.7 | 20.6 plexity is O(M (M2 dpoqer + Md2, ., + | Z|0)), where M

Table 3: Performance of RIC with different caption model
on CCI152K, where B@N, M, R, C and S are short for
BLEU@N, METEOR, ROUGE-L, CIDEr and SPICE.

tently show higher epsilon values than noisy ones, validating
the effectiveness of the measurement criterion. Figure 5 (b)
illustrates classification accuracy for noisy and clean words
based on reliability weight under various noise ratios on the
asymmetric noise dataset. While NIC doesn’t perform direct
binary classification, the model’s ability to distinguish them
is assessed by manually setting threshold values. The lines
consistently show high and smooth performance, affirming
the efficacy and robustness of our evaluation criteria. Addi-
tionally, as a denoising training framework applicable to var-
ious baselines with minimal extra parameters, NIC’s com-
plexity primarily arises from entropy and cross-entropy cal-
culations during reliable weight assessment, which depends
on the inherent baseline complexity. The overall time com-

is the number of visual regions, |Z| is the vocabulary size.

5 Conclusion

The noise-label problem has gained widespread attention
due to its prevalence. Compared with traditional category
labels, sentences containing contextual and semantic infor-
mation are more complex and challenging, yet research ex-
ploring noisy image captioning tasks is insufficient. In this
regard, we propose a Noisy-aware Image Captioning (NIC)
method that takes into account fine-grained word informa-
tion instead of explicitly weighting overall examples. In
summary, NIC explores mismatched words by adaptively
evaluating the reliability weight of each word-label through
inter-modal representativeness and intra-modal discrimina-
tiveness. Additionally, it progressively fuses model predic-
tions and original word-labels to construct more reliable
pseudo-labels, considering learnable word-label weights and
model convergence. Practical results demonstrate NIC’s ef-
fectiveness in handling diverse noisy scenarios, with easy in-
tegration into any state-of-the-art image captioning method.
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